Strict Deformation Quantization of a Particle in External Gravitational and Yang-mills Elds

نویسنده

  • P. Landsman
چکیده

An adaption of Rieeel's notion of`strict deformation quantization' is applied to a particle moving on an arbitrary Riemannian manifold Q in an external gauge eld, that is, a connection on a principal H-bundle P over Q. Hence the Poisson algebra A 0 = C 0 ((T P)=H) is deformed into the C-algebra A = K(L 2 (P)) H of H-invariant compact operators on L 2 (P), which is isomorphic to K(L 2 (Q)) C (H), involving the group algebra of H. Planck's constant h is a genuine number rather than a formal expansion parameter, and in the limit h ! 0 commutators and anti-commutators converge to Poisson brackets and pointwise products, respectively, in a well-deened analytic sense. This deformation can be interpreted in terms of Lie groupoids and algebroids, as A 0 is the Poisson algebra of the Lie algebroid (T P)=H, whereas A is the C-algebra of the gauge groupoid of the bundle (P; Q; H). Other topics we discuss from the point of view of our formalism are Wigner functions, and the quantization of the Hamiltonian as well as position and momentum (including their domains).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization and Classicization: from Jordan-lie Algebras of Observables to Gauge Elds

A uniied approach to classical and quantum mechanics is presented , based on the use of Jordan-Lie algebras. Examples of such algebras of physical observables are constructed, which describe a particle moving on a certain class of curved spaces. In the spirit of the algebraic theory of superselection sectors, irreducible representations of the quantum algebras are identiied with possible quanti...

متن کامل

Geometric quantization on homogeneous spaces and the meaning of ‘inequivalent’ quantizations

Consideration of the geometric quantization of the phase space of a particle in an external Yang-Mills field allows the results of the Mackey-Isham quantization procedure for homogeneous configuration spaces to be reinterpreted. In particular, a clear physical interpretation of the ‘inequivalent’ quantizations occurring in that procedure is given.

متن کامل

Lie Groupoid C∗-Algebras and Weyl Quantization

A strict quantization of a Poisson manifold P on a subset I ⊆ R containing 0 as an accumulation point is defined as a continuous field of C∗-algebras {Ah̄}h̄∈I , with A0 = C0(P ), a dense subalgebra Ã0 of C0(P ) on which the Poisson bracket is defined, and a set of continuous cross-sections {Q(f )} f∈Ã0 for which Q0(f ) = f . Here Qh̄(f ∗) = Qh̄(f )∗ for all h̄ ∈ I , whereas for h̄ → 0 one requires t...

متن کامل

Quantization of a Particle in a Background Yang-mills Field

Two classes of observables defined on the phase space of a particle are quantized, and the effects of the Yang-Mills field are discussed in the context of geometric quantization. PACS: 03.65.Bz, 02.40.Vh Short title: Particle in background Yang-Mills field.

متن کامل

ua nt - p h / 97 06 04 0 v 1 1 8 Ju n 19 97 QUANTIZATION OF A PARTICLE IN A BACKGROUND YANG - MILLS FIELD

Two classes of observables defined on the configuration space of a particle are quantized, and the effects of the Yang-Mills field are discussed in the context of geometric quantization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998